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Abstract. For a class of generalized one dimensional Hubbard models, we study the stability region for the
superconducting η-pairing ground state. We exploit the Optimum Ground State (OGS) approach and the
Lanczos diagonalization procedure to derive a sequence of improved bounds. We show that some pieces of
the stability boundary are asymptotic, namely independent on the OGS cluster size. The phenomenon is
explained by studying the properties of certain exact eigenstates of the OGS Hamiltonians.

PACS. 74.20.-z Theories and models of superconducting state

Generalized Hubbard models are important theoretical
frameworks for the study of superconductivity. Apart from
special cases, they are not solvable and rigorous results on
their physical properties are quite valuable.

As is well known, a good marker for superconductivity
is off-diagonal long-range order (ODLRO) [1], a property
that makes sense in any number of dimensions and implies
both Meissner effect and flux quantization. Ground state
ODLRO can be detected by studying the asymptotic be-
haviour of fermion correlation functions [2]. Of course, if
the ground state is analytically known, it can be checked
explicitly. This is the case of the so-called η-pairing [3]
states that exhibit ODLRO and, under some constraints,
can be the ground states of certain generalized Hubbard
models.

When an η-pairing state is discovered to be an exact
eigenstate, the next problem is to determine the region in
the coupling space where it is also the ground state. To
answer this question many analytical methods have been
developed to establish rigorous bounds for the super-
conducting region. Among them, we recall the positive
semidefinite operator approach [5,6] and the bounds de-
rived by application of Gerschgorin’s theorem [7]. The al-
gorithm which however appears to be the simplest and
most powerful is the Optimum Ground State (OGS)
scheme proposed for generalized Hubbard models [8] and
recently applied to the case of next to nearest neighbour
couplings [9]. The method is based on the exact diago-
nalization of a certain local Hamiltonian defined over a
cluster of sites. If the cluster is made larger, the super-
conducting region is generally expected to expand. In the
limit of an infinite cluster we obtain exact bounds.

For simplicity, in the following we shall call supercon-
ducting (SC) region, the subset of coupling space where
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the η-pairing state is the ground state. In this paper, we
apply the OGS algorithm to study the stability of the
superconducting η-pairing state with momentum π. We
discuss the behaviour of the OGS bounds as a function
of the cluster size using the Lanczos algorithm to diag-
onalize the cluster Hamiltonian. We obtain an improved
SC region that can be considered numerically asymptotic
and discuss in details the inclusion problem by stating
the conditions under which larger clusters are expected
to give better bounds. Another interesting result is that
some pieces of the boundary between the SC and non SC
regions are independent on the cluster size. We explain
these stable boundaries by means of certain exact eigen-
states of the OGS Hamiltonians whose properties are cru-
cial in this respect.

Let us consider the Hamiltonian of a one dimensional
generalized Hubbard model (we denote by 〈i, j〉 the sum
over nearest neighbour sites)

H = −t
∑

〈i,j〉,σ=↑,↓
(c†iσcjσ + c†jσciσ)

+X
∑

〈i,j〉,σ=↑,↓
(ni,−σ + nj,−σ)(c†iσcjσ + c†jσciσ)

+ U
∑
i

(
ni↑ −

1
2

)(
ni↓ −

1
2

)
+ V

∑
〈i,j〉

(ni − 1)(nj − 1) + Y
∑
〈i,j,〉

(p†ipj + p†jpi), (1)

where ciσ and c†iσ are canonical Fermi operators obeying
{c†iσ, cjσ′} = δijδσσ′ and {ciσ, cjσ′} = {c†iσ, c

†
jσ′} = 0. The

number operators are defined as usual: niσ = c†iσciσ and
ni = ni↓ + ni↑. The operator pi† creates pairs p†i = c†i↑c

†
i↓.
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The Hamiltonian in (1) contains many couplings: X
parametrizes the bond-charge repulsion interaction which
has been related to high-Tc materials [10]; U is the usual
on site Coulomb interaction; V is the nearest neighbour
charge-charge coupling; Y controls the pair hopping term
as in the Penson-Kolb-Hubbard models [11].

We introduce the η-pairing operator with momentum
P = π

η† =
∑
n

(−1)np†n, (2)

from which we build the state

|η〉 = (η†)N/2|0〉, (3)

where |0〉 is the empty state and N is the number of
particles. The state |η〉 is an eigenstate of H provided
2V + Y = 0. In this case it describes a state with energy

E+ =
1
4

(U + 4V ), (4)

and can be shown to possess ODLRO. Since E+ is an
upper bound for the ground state energy, a strategy to
proof that |η〉 is the ground state is to find a lower bound
E− and a region in the coupling space where E− = E+.
The same procedure applies also to other exact eigenstates
like, for instance, the η-pairing state with zero momentum.

Lower bounds for the ground state of H may be ob-
tained following the OGS approach [8]. The Hamilto-
nian (1) is written as

H =
∞∑

n=−∞
(h(1)
n + h

(2)
n,n+1), (5)

where h(1)
n contains operators acting only on site n and

h
(2)
n,n+1 links site n to site n + 1 and depends on opera-

tors acting on both. To recast (5), we introduce extended
operators

h̃(k)
n =

1
2
h(1)
n +

n+k−2∑
m=n

h
(2)
m,m+1

+
n+k−2∑
m=n+1

h(1)
m +

1
2
h

(1)
n+k−1, (6)

for any integer k ≥ 2. The local Hamiltonian h̃(k) describes
a cluster of k sites. Like H, also h̃(k) admits exact eigen-
states obtained by acting with η† on the vacuum. All the
states

(η†)p| 0 · · · 0︸ ︷︷ ︸
k sites

〉, p integer (7)

are degenerate with energy E+ and are precisely those
needed to build the |η〉 state on the infinite lattice (see [8]
for a complete discussion of the k = 2 case). The Hamil-
tonian can be written in terms of h̃(k) as

H =
1

k − 1

∞∑
n=−∞

h̃(k)
n . (8)

The normalization factor 1/(k− 1) takes into account the
number of terms in equation (8) which contain a given site.
We remark that other choices of h̃(k)

n are possible which
are associated, for instance, with different splittings of the
boundary one site operators. If we denote by E0(L) the
ground state energy for a system of L sites and fixed filling,
the asymptotic ground energy per site is by definition

E0 = lim
L→∞

E0(L)
L

, (9)

and, for each k, satisfies the rigorous bound

E0 ≥
1

k − 1
minσ(h̃(k)) def= E(k)

0 , (10)

where σ(A) denotes the spectrum of the operator A.
The quantity E(k)

0 , the ground state energy of the
renormalized cluster Hamiltonian, is a function of the cou-
plings. It must be lower or equal to E+ since, as we have
seen, the local η-pairing states equation (7) have energy
E+. In the region of coupling space where equality holds
E(k)

0 = E+ the state |η〉 becomes an optimal ground state
which can be built in terms of local ground states (for
more details, see [8] and the clear discussion in [12])

The right hand side of equation (10) depends also on
the cluster size k and a better bound is expected as k
increases. However, strictly speaking, this is false. Let us
write a cluster of k sites in terms of smaller clusters

h̃(k)
n = h̃(k−l)

n + h̃
(l+1)
n+k−l−1, 1 ≤ l ≤ k − 2. (11)

From (11) we obtain the exact inequalities

E(k)
0 ≥ k − l − 1

k − 1
E(k−l)

0 +
l

k − 1
E(l+1)

0 , (12)

and in particular

E(2k−1)
0 ≥ E(k)

0 . (13)

The derivation of equations (12, 13) does not require |η〉 to
be an OGS. If we now impose the OGS condition, E(k)

0 =
E+, then equations (12, 13) allow us to build sequences
of bounds converging to the exact bound in the infinite
cluster size limit. In more details, equation (13) splits into
disjoint sequences of cluster sizes as follows

2 ⊂ 3 ⊂ 5 ⊂ · · · ,
4 ⊂ 7 ⊂ 13 ⊂ · · · , (14)

where the notation means that each sequence gives bet-
ter and better bounds and the size of the correspond-
ing SC regions increases along the sequence. We notice
that in general two sequences are not related at all and,
in particular, 3 ⊂ 4 may be false as we shall see in ex-
plicit examples. What can be stated in full generality is
that the minimal choice k = 2 is always the worst bound
since from

E(N+1)
0 ≥ N − 1

N
E(N)

0 +
1
N
E(2)

0 , (15)
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Fig. 1. Size dependence of the OGS bounds in the (U,V ) plane
atX = 0.

we proof inductively that ∀N ≥ 2 we have

E(N)
0 ≥ E(2)

0 . (16)

Keeping these remarks in mind, we study the size depen-
dence of the conditions under which (1) with Y = −2V
admits |η〉 as its ground state by explicit diagonalization
of h̃(L) on clusters of increasing sizes. The OGS method
requires diagonalization of the local Hamiltonian in all
sectors of definite up and down electron numbers; for the
numerical diagonalization we use the Lanczos algorithm.
In the following we shall always assume t ≡ 1 and denote
by L the cluster size.

In Figure 1 we show at X = 0 the size dependence
of the bounds when V > −1. As can be seen, there are
regions where the corrections are definitely negligible be-
yond L = 3, i.e. V > −0.4. On the other hand, around
V = −0.5, size effects can be important up to large cluster
sizes. We remark that this figure does not show any non
trivial relationship among the bounds obtained at differ-
ent L: they just improve monotonically.

In Figure 2 we show the best bounds obtained with
L = 6 at several values of X . An enveloping straight line
appears around V = −1. Successive corrections are quite
small and the shown region is effectively asymptotic [13].

In Figure 3 we plot at four different X the difference
∆U(L) = U(L) − U(2) between the boundary curves at
L > 2 and the minimal one at L = 2. The inclusion
tree (14) is non trivially satisfied and indeed the L = 4
bound is not always better than the L = 3 one. As a sec-
ond remark, we observe that at each X there is a piece
of the boundary where finite size corrections vanish. This
turns out to happen between two of the L = 2 boundary
points. As shown in [6,8], the result at L = 2 is that a
sufficient condition for |η〉 to be the the ground state is

V ≤ 0, (17)

U ≤ −2 max
(

2 + 2V, 2|1− 2X |+ 2V, V − (1−X)2

V

)
.

−4 −3 −2 −1 0
V/t

−40

−30

−20

−10

0

U
/t

0 < X < 1

Fig. 2. Best OGS bounds obtained with L = 6 clusters. The
different curves correspond (from bottom to top) to X = 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0.
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Fig. 3. Existence of an asymptotic boundary. The plots show
U(V ;L)−U(V ; 2) as a function of V (always in units of t) for
four values of X. The function U(V ;L) is the curve obtained
from the OGS bounds using clusters of L sites. The inset at
X = 0 shows a non trivial inclusion tree as the cluster size is
increased.

For 0 ≤ X ≤ 1 (we study this case only), the difference
∆U vanishes between the intersections of the curves U =
−4(1 + V ) and U = −2(V − (t − X)2/V ), namely for
|V + 1| ≤

√
X(2−X).

Let us now discuss why this stable boundary subset ap-
pears. For each value of L, the normalized cluster Hamil-
tonian 1

L−1 h̃
(L) has many eigenstates |E(L)

i (U, V,X)〉 (i =
1, . . . ,dim(h̃)) which we label by their eigenvalue.

Let X play the role of a parameter; following the
OGS approach, the inequalities E

(L)
i ≥ E+ determine
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the superconducting region in the (U, V ) plane. Each point
of its boundary satisfies E

(L)
i = E+ for some index i.

Hence, if a subset of the boundary turns out to be L in-
dependent, a possible reason can be the existence of an
eigenvalue independent on L. A trivial case is provided by
the states (η†)p|0〉 (p integer) where |0〉 is the empty state
for h̃(L). However, in this case, the condition E(L) = E+

is identically satisfied for all U , V and X and does not
determine any boundary. To find a non trivial eigenstate
with eigenvalue independent on L we can consider the one
particle sector (i.e. n↑ = 1, n↓ = 0 or vice versa). The two
states

|Sσ〉 =
L∑
n=1

c†nσ|0〉, σ =↑, ↓, (18)

are indeed exact eigenstates of 1
L−1 h̃

(L) provided U =
−4(1 + V ) and in this case their eigenvalue is precisely
E+ = −1 (t ≡ 1). The states |Sσ〉 are thus responsible for
the stable boundary. To understand why it is confined to
|V + 1| ≤

√
2X −X2 we introduce additional eigenstates

of h̃(L). Indeed, on the line U = −4(V + 1), the su(2)
singlet state (X 6= 1)

|γ〉 =

∑
i6=j

c†i↑c
†
j↓ + ρ

∑
i

1− (−1)i+L

2
p†i

 |0〉, (19)

can be shown to be an exact eigenstates of 1
L−1 h̃

(L) with
eigenvalue E+ if and only if ρ = (2 + V )/(1 − X) and
V = −1 ±

√
2X −X2. This is the L > 2 generalization

of the state |ψ±〉 discussed in [8] in the L = 2 case. It
forbids to extend the bounds associated to |Sσ〉 beyond
the points |V + 1| =

√
2X −X2. The case X = 1 is singu-

lar and must be treated separately; the number of doubly
occupied sites is conserved and splitting may occur. For
instance, the state |γ+〉 with V = 0 splits into the inde-
pendent eigenstates |γi〉 = p†i |0〉.

The above analytical and numerical results lead us to
the conclusion that the inequality U ≤ −4(1 + V ) is a
necessary and sufficient condition for |η〉 being the ground
state in the subset of the coupling space constrained by
the conditions t ≡ 1, Y +2V = 0, 0 < X < 1 and |V +1| ≤√
X(2−X).
The above facts do not change qualitatively when the

Heisenberg exchange interaction is switched on. A com-
plete analysis of a general extended Hubbard model will
be given elsewhere [14].

To conclude, in this Letter we have considered gener-
alized Hubbard models with nearest neighbour couplings
and the problem of determining when the ground state
is a superconducting η-pairing state. As predicted in [8],
it may happen that the OGS bounds obtained with the

smallest clusters are actually exact. This peculiar situation
seems rather typical and indeed we have shown that there
exist subsets of the bounding region which are asymptotic
and remain unchanged as the cluster size is varied. We
clarified the origin of the phenomenon by providing several
exact eigenstates which play a crucial role in its derivation.

Finally, I would like to mention [15] where the opti-
mum ground state approach is exploited to analyze an-
alytically the 3-sites bounds for the stability domains of
ground states of generalized Hubbard models with next-
nearest neighbour interaction.
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